Commit 0804fb14 authored by salbiach's avatar salbiach
Browse files

Commented constraints

parent 50e572fa
......@@ -16,7 +16,7 @@ class Eddl_Compss_Distributed:
def __init__(self):
self.model = None
@constraint(computing_units="${OMP_NUM_THREADS}")
#@constraint(computing_units="${OMP_NUM_THREADS}")
@task(serialized_model=IN, optimizer=IN, losses=IN, metrics=IN, compserv=IN, is_replicated=True)
def build(self, serialized_model, optimizer, losses, metrics, compserv):
......@@ -42,7 +42,7 @@ class Eddl_Compss_Distributed:
#print("Finaliza build task en worker")
@constraint(computing_units="${OMP_NUM_THREADS}")
#@constraint(computing_units="${OMP_NUM_THREADS}")
@task(
x_train={Type: COLLECTION_IN, Depth: 2},
y_train={Type: COLLECTION_IN, Depth: 2},
......@@ -195,7 +195,7 @@ class Eddl_Compss_Distributed:
return final_parameters
@constraint(computing_units="${OMP_NUM_THREADS}")
#@constraint(computing_units="${OMP_NUM_THREADS}")
@task(accumulated_parameters=COMMUTATIVE, parameters_to_aggregate=IN, mult_factor=IN, target_direction=IN)
def aggregate_parameters_async(self, accumulated_parameters, parameters_to_aggregate, mult_factor):
......@@ -207,7 +207,7 @@ class Eddl_Compss_Distributed:
return accumulated_parameters
@constraint(computing_units="${OMP_NUM_THREADS}")
#@constraint(computing_units="${OMP_NUM_THREADS}")
@task(initial_parameters=IN, train_test_flag=IN, target_direction=IN)
def evaluate(self, initial_parameters, train_test_flag):
......@@ -249,7 +249,7 @@ class Eddl_Compss_Distributed:
return 1
@constraint(computing_units="${OMP_NUM_THREADS}")
#@constraint(computing_units="${OMP_NUM_THREADS}")
@task(initial_parameters=IN, x_test={Type: COLLECTION_IN, Depth: 2}, y_test={Type: COLLECTION_IN, Depth: 2}, num_images_per_worker=IN, workers_batch_size=IN, target_direction=IN)
def eval_batch(self, x_test, y_test, initial_parameters, num_images_per_worker, workers_batch_size):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment