
RELIABLE MACHINE LEARNING ACCELERATION FOR FUTURE SPACE
PROCESSORS AND FPGAS: LEON, NOEL-V AND TASTE

Marc Solé1,2, Jannis Wolf1,3, and Leonidas Kosmidis2,1

1Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
2Barcelona Supercomputing Center (BSC), Barcelona, Spain

3Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

ABSTRACT

In this paper we present the design and implementa-
tion of two hardware designs for the acceleration of AI
processing in space. First we present a SIMD mod-
ule extension for Cobham Gaisler’s LEON3 and NOEL-
V space processors with support for fast AI operations,
which achieves up to 4× performance improvement for
commonly used ML operations compared to a minimal
LEON3 configuration. Next, we present a Binary Neu-
ral Network (BNN) FPGA accelerator which leverages
ESA’s TASTE model-based framework to facilitate com-
munication with the host space processor. Our simulation
results show an estimated performance improvement of
32× compared to LEON3.

Key words: AI, ML, SWAR, LEON3, NOEL-V, BNN,
TASTE.

1. INTRODUCTION

In recent years there has been an increasing interest in
artificial intelligence (AI) and machine learning (ML) in
space, specifically for on-board processing [1]. For ex-
ample, current missions from both ESA and NASA in-
clude AI processing for autonomy and efficiency. In par-
ticular, NASA’s latest Mars Rover, Perseverance, uses AI
for navigation, however the low processing power of ex-
isting space processors permits only offline navigation
planning and only over small distances and at low speed.
For this reason, COTS accelerators such as Intel Mo-
vidius are explored for use in space systems, such as in
ESA’s Φ-Sat-1 technology demonstration mission, where
AI is used for detecting clouds in satellite earth observa-
tion images, in order to save bandwidth from transmit-
ting them. However, due to the low radiation tolerance of
COTS systems in general, these solutions cannot be cur-
rently used beyond low-earth orbit (LEO) or for long term
missions such as institutional ones. Moreover, COTS
software stacks used in such accelerators, frequently de-
pend on non-space qualified and non-real-time operating
systems such as Linux, which creates another challenge

to their adoption.

Therefore, ML acceleration features are needed in al-
ready qualified space processors and FPGAs, so that they
comply with space requirements and to reduce their qual-
ification time and cost. In this paper, we describe our
on-going work on two such solutions, one for increasing
the AI performance of space processors using a low-cost,
short vector unit co-designed for common machine learn-
ing operations, and another one implementing a state-of-
the-art low-cost binarised neural networks (BNN) on FP-
GAs, using ESA’s TASTE framework for a reliable soft-
ware stack. Both solutions are implemented in VHDL
and are open-source [2][3] . Our early experimental re-
sults show that both proposals can provide a significant
boost to the on-board machine learning processing capa-
bilities of existing space systems.

In the following sections we provide the current design
details and implementation status of these two hardware
proposals as well as preliminary results of our experi-
mental evaluation. Section 2 describes the architectural
design of our low-cost vector unit, while Section 3 de-
scribes the architecture of the binarised-network acceler-
ator. Section 4 evaluates each of the proposals and Sec-
tion 5 presents the conclusion and our plans for future
work.

2. LOW-COST SHORT VECTOR SUPPORT FOR
LEON3 AND NOEL-V FOR ML

2.1. Architectural Design

Our work provides a low-cost hardware unit to speed-up
AI applications through the use of short vector operations
and special instructions which improve the performance
when performing machine learning operations. The de-
sign has been driven by analyzing the most common op-
erations in machine learning [4].

The module is portable and has been designed for the
dual-licensed LEON3 [5] and NOEL-V [6] processors
targeting the space domain designed by Cobham Gaisler.

Similar to the processors, the module is written in VHDL
and available as open source.

P0P1P2

C3

P3

C2 C1 C0

0 1 01010 1

C’1 C’0

A’0A’1

C’3

A’3

C’2

A’2

 SWIZZLING NETWORK𝜒

A3 B3 A2 B2 A1 B1 A0 B0

0 10 10 10 1

Figure 1. Outline of the SIMD module.

Despite the increased performance boost that traditional
vector processing units offer, they have a significant hard-
ware overhead, occupying large portions of the precious
die area of embedded processors, which for the older pro-
cessing technologies used for fabricating space chips are
even higher. The main reason for this overhead is the
large additional vector register files as well as the large
vector width required by their functional units, which are
frequently operating in floating point format. As such,
they occupy an additional pipeline in the design.

In order to minimize the hardware overhead of our imple-
mentation, our design follows the next principles. First,
it has been recently shown in the literature that 8-bit in-
teger instructions are enough for machine learning [7],
while there is a trend for even smaller sizes to the extreme
of a single bit in the case of binarized neural networks,
which we explore with our second contribution presented
in Section 3. Therefore in our module, we only support
integer and bitwise operations of 8-bit components, with
and without saturation logic.

The fact that we operate on integer values, allows us to
use the existing integer register file, avoiding extra hard-
ware overhead and limiting our SIMD processing to 4
8-bit values which fit within a register. This independent
parallel processing within a processor register is known in
the literature as SIMD within a register - SWAR [8]. The
original use of the term SWAR [8] was coined to refer to a
generic, portable software programming model that could
be implemented on top of the multimedia/short vector in-
structions of commodity microprocessors such as Intel’s
MMX/SSE, PowerPC’s Altivec or SPARC v9’s VIC ex-
tensions, but nowadays it is used with a broader mean-
ing which includes all (mainly short) vector architectures
whose instructions operate over multiple elements than
can fit in a CPU register, either a vector or a scalar one.

Recently, SWAR extensions for the floating point instruc-

tions of the LEON2FT space processor have been ex-
plored within an ESA-funded activity [9]. In that work,
short vector instructions were introduced for accelerat-
ing software defined radio (SDR)/digital signal process-
ing (DSP) operations frequently found Global Navigation
Satellite System (GNSS) receiver software such as corre-
lation, demodulation and table lookups used in sine and
cosine computations.

Inspired by [9], we apply a similar methodology focused
on instructions frequently found in Machine Learning
processing algorithms, and we extend this concept fur-
ther, making some key architectural decisions which dif-
ferentiate our proposal and offer additional benefits. The
fact that we are reusing the existing integer register file
enables us to utilise the existing processor instructions
for loading, setting and performing some modifications to
these registers. Therefore, this minimizes the additional
SIMD instructions which need to be added to the proces-
sor. Moreover, this choice allows us to reuse the integer
pipeline, requiring minimal hardware overhead and de-
sign changes. Our short vector module consists of two
pipeline stages as shown in Figure 1, specifically tailored
for the acceleration of dot product and matrix multiplica-
tion operations, which are dominating machine learning
applications, as well as other operations found in neural
network layers.

The first one operates in parallel with the execution stage
of the integer pipeline, where the 32-bit integer Arith-
metic Logic Unit (ALU) of the LEON3/NOEL-V is lo-
cated, since only one of them can be used at the same
time. The second pipeline stage of our module, imple-
ments reduction operations (maximum, minimum, sum
or XOR) among the 4 8-bit components and it is bypassed
when it is not needed, incurring no penalty.

In order to integrate the module we had to add sup-
port for new instructions in the processor. Each instruc-
tion encodes the operation code for each stage and the
source and destination registers. In case there is no need
to do an operation in one stage, it is bypassed by set-
ting the corresponding operation code to 0. Although
it was designed to work with both LEON3 and NOEL-
V, currently the module has been implemented only in
the LEON3 processor. In this implementation, we have
reused the unused opcode space of Sparc V8 ISA, in or-
der to preserve backwards compatibility with existing bi-
naries. The NOEL-V implementation is currently work
in progress and we are using the opcodes dedicated to
custom ISA extensions.

The introduced SIMD instructions include also immedi-
ate versions. Since the available instruction space was
limited, we encoded some commonly used values for
each operation, such as powers of two, and the powers of
two plus or minus one, similar to operations found in em-
bedded GPU ISAs[10]. This is a key difference with [9],
which allows to reduce register pressure and increase the
instruction throughput, while accelerating numerous op-
erations.

Finally in order to further improve the performance for
certain operations, we added also the following features
which were not used by [9] but were inspired by embed-
ded GPUs and other vector extensions in microproces-
sors:

1) Masking: The mask, or predication vector, is a bit-
vector which controls whether the result of each 8-bit
component is written in the destination register.

2) Swizzling: The swizzling vector allows reordering the
components of both input operands, as well as their du-
plication or masking. It is implemented with a series of
multiplexers, shown for clarity as ”swizzling network” in
Figure 1.

Both bit-vectors are set using the write instruction to the
new special register %scr (SIMD Control Register).

Our design is open source and can be accessed at [2]

2.2. Programming

We are currently working towards adding compiler sup-
port for our SIMD unit. For the moment, we only have
added assembly support within the binutils of LEON3,
which is provided as a part of Gaisler’s LEON Bare-C
Cross Compilation System (BCC) [11]. This allows to
program the target algorithms in C using inline assembly
for the SIMD operations, using the gnu assembler syntax.
Listing in Figure 2 shows an example of this for a trivial
example of vector addition with saturation.

Given the fact that our module operates on existing inte-
ger registers, with inline assembly we can allocate vec-
tor variables to specific registers (lines 5-7) and use them
for normal operations in C (lines 10, 12, 16) or with our
SIMD instructions using the explicit inline assembly in-
struction (line 14). Conceptually, this is similar to pro-
gramming with vector intrinsics found in any short vector
architecture eg. ARM NEON, so we are currently work-
ing on the addition of such intrinsics in the compiler. In
the future, we plan to add further support in the com-
piler, to allow the exploitation of the SIMD architecture
by ”regular” GPU-like vector code as the one shown in
the comments in the Figure 2 or even automatic SIMD
vectorisation from scalar C code.

3. BNN ACCELERATOR

3.1. Architectural Design

Depending on the type and the size of the actual neu-
ral network and on other mission requirements, an FPGA
accelerator might be a preferred option. Moreover, re-
cently Binary Neural Networks (BNNs) have been pro-
posed [12], which reduce significantly the memory and
computational resources required for inference.

1 unsigned char w e i g h t s [3 2 * 3 2] ;
2 unsigned char n e x t l a y e r [3 2 * 3 2] ;
3

4 / * A l l o c a t e s h o r t v e c t o r s t o s p e c i f i c r e g i s t e r s * /
5 r e g i s t e r unsigned i n t a asm (”%g4 ”) ;
6 r e g i s t e r unsigned i n t b asm (”%g5 ”) ;
7 r e g i s t e r unsigned i n t r e s u l t asm (”%g6 ”) ;
8

9 / * i n i t i a l i s e a l l a components t o 0 , i e a . xyzw=0 * /
10 a = 0 ;
11 / * b . xyzw = w e i g h t s [0] . xyzw * /
12 b = * ((unsigned i n t *) &w e i g h t s [0]) ;
13 / * r e s u l t . xyzw = a . xyzw + b . xyzw * /
14 asm (” add %g4 , %g5 , %g6 ”) ;
15 / * n e x t l a y e r [0] . xyzw = r e s u l t . xyzw * /
16 * ((unsigned i n t *) &n e x t l a y e r [0]) = r e s u l t ;

Figure 2. Example of SIMD programming in C with inline
assembly

While FPGA support for this type of neural networks
already exists or can be implemented in various FPGA
toolkits such as Xilinx’s FINN [13] framework, Xilinx’s
Versal AI core [14], Microchip’s VectorBlox [15] and
others including high-level synthesis solutions, there can
be certain settings in high criticality space systems which
require full control or ownership of the hardware and
software stack of the accelerator, such as integration with
real-time operating systems (RTOSes), portability across
FPGA vendors and other requirements.

In order to satisfy this need, ESA frequently relies on
model-based engineering approaches. In particular, ESA
has developed the open source TASTE model-based en-
gineering framework [16][17], which supports both soft-
ware and hardware code generation, while it supports so-
lutions from multiple vendors relevant to the spacec do-
main.

In this section, we present an implementation of a BNN
accelerator for FPGA systems which is appropriate for
use in critical space systems, since its software stack and
hardware communication implementation with the host
CPU is correct-by-construction, leveraging TASTE.

We use TASTE in order to automatically generate the
communication between the host space CPU processor,
LEON 3, and our accelerator, based on an Abstract Syn-
tax Notation One (ASN.1) [18] specification. In the
ASN.1 specification, we define the amount of data we
want to be transferred to the accelerator and their types,
which is input data over which we want to perform the
inference. Moreover, we describe the data which are sent
back to the host CPU to indicate the inference results,
which in our case is the short bit-vector of the last BNN
layer used for the computation. Then the host processor
translates this bit-vector to useful information, eg. to de-
termine the class of the inferred object in case of image
recognition.

The TASTE framework generates the host CPU code
required for the communication based on the provided
specification, which is in our case C code for bare metal
execution. However, TASTE supports also code genera-
tion for Ada and its high-integrity Spark subset, as well

AccumulatorXNOR GateBlockRAM memory

holding the weights

Feature Map from

previous layer

+ Output Buffer

Input Buffer

sign

Fully connected cell

Figure 3. Functioning core of the accelerator architec-
ture: fully connected cell.

as integration with the RTEMS real-time operating sys-
tem, including its SMP variant. Moreover, it generates
the hardware implementation of the specified communi-
cation protocol in VHDL as well the project configuration
targeting specific FPGAs, allowing a large variety of de-
vices from different vendors. As a consequence, we can
guarantee that these parts are free of errors, and therefore
we can only focus on the implementation and verification
of the BNN accelerator functionality.

As opposed to the input data which are streamed to the
accelerator, the BNN weights are stored in the FPGA in
block ram and they are reused for all inference operations
over the different input data. In BNN networks, each ac-
tivation and weights have two possible values, 1 or -1,
which can reduce the memory consumption up to 8-64
times compared to conventional neural networks imple-
mented with integer operations. Since only 1 bit is used
for encoding these values, -1 is represented by the value
0. The more important benefit of BNNs is that instead
of the expensive Multiply-and-Accumulate (MAC) oper-
ation used in the most expensive parts of the conventional
neural networks, the implementation of fully connected
layers, this is replaced by an exclusive nor (XNOR) op-
eration and bit-count. In a similar way, other operations
found in conventional NNs are replaced by bit-wise oper-
ations in BNNs.

In our accelerator, we currently implement fully con-
nected networks using interconnected fully connected
cells. The architecture of each cell is shown in Fig-
ure 3. From an input buffer the feature map gets loaded
and flows through an xnor gate together with the weights
loaded from the BlockRAM. An accumulator adds up
the values until the full feature vector passed the xnor
gate. The sign function calculates the outcome as fol-
lows: result = 2 ∗ p − n where p is the number of set
bits and n is the length of the feature vector. If the result
is positive, the activation of the neuron is 1, if its negative
it is 0, respectively.

The RTL schematic of parts of the accelerator are shown
in Figure 4. The fully connected layer receives the data
from the FIFO module from the accelerator or the previ-
ous layers, as well as the weights from the memory mod-
ules. The fully connected layer as well as the memory is
clocked and connected with an address counter. In our
current implementation the loading of the weights takes
twice as many cycles as the number of neurons in the
accelerator layers. After the calculation an accumulator
module sends the activations to the next layer. We can

fifo_buffer

feature_buffer

i_wr_data(2:0)

i_clk

i_rd_en

i_rst_sync

i_wr_en

o_rd_data(2:0)

o_ae

o_af

o_empty

o_full

memory_bram

weights

addra(3:0)

clka

douta(2:0)

xnor_popcount_1

xnor_pop1

d_in(2:0)

wei(2:0)

clk_xn

res

accumulator_1

fc1_activation

c(3:0)

clk

w1

o(2:0)

input_layer:1

fc1

data_in(2:0)

weights_in(2:0)

calc_pos

clk_fc

activation(2:0)

finish_fc

accelerator:1

Interface_accelerator

data_in(63:0)

clock_accelerator

reset_accelerator

start_accelerator

buf_ful(63:0)

data_out(63:0)

res_ready(63:0)

finish_accelerator

Figure 4. Sample accelerator schematic showing only
one fully connected cell.

further optimize the design by using more BRAM mod-
ules for storing and loading the weights in parallel, how-
ever, the current design can provide enough performance
as we show in the next section, so this is left as future
work. The full code of our accelerator is released as open
source [3].

4. EVALUATION

4.1. Vector Unit

Hardware Overhead: We synthesized the smallest pos-
sible LEON 3 processor configuration from GRLIB ver-
sion GPL 2020.4-b4261 (LEON3-MIN), integrated with
our module, using Vivado 2020.1 for the Artix 7 (part
xc7a100tcsg324-2) FPGA. Table 1 shows the synthesis
results of our module, including both the SIMD module
as well as the changes in the control path for the imple-
mentation of the new instructions.

Table 1. Hardware Cost

Resource Absolute Value % of the design
LUTs 1869 25 %
FF 168 5.9 %

We can see that our modifications account for 25% of the
resources of the resulting integrated LEON 3 design. This
is significantly smaller than the typical overhead of vector
units as well as compared to similar state of the art vector
designs for embedded systems [19]. Moreover, consider-
ing that we are using the smallest LEON 3 configuration,
with larger LEON 3 designs, our relative overhead is go-
ing to be even smaller. Our modifications reduce the fre-
quency of the processor from 100 MHz to 72MHz. The
biggest contributor to the critical path is the multiplica-
tion operation, whose impact is amplified by the cascade
of ALUs in the second pipeline stage of the module, so
in the future we are going to improve this part. With-
out the multipliers, we could achieve a 90MHz frequency.
However, even with this frequency reduction, our module
provides an important performance improvement in ML
processing as we show next.

Performance: We collected preliminary results with the
most commonly used operation in machine learning, ma-
trix multiplication, which is used for implementing both

convolutions as well as fully-connected layers in neu-
ral networks. We used different sizes and we compared
our SIMD implementation with two versions of the ma-
trix multiplication running on an unmodified LEON 3
as shown in Table 2. The baseline Leon3 char uses
8 bit values and simulates saturation using comparisons,
and Leon3 int uses 32 bits values so saturation is not
required. We introduced the SIMD instructions for our
module with inline assembly in C as shown in Figure 2
and we make sure that the results of our SIMD version are
identical to the ones produced by the baseline versions.

Table 2 shows the cycle count for each test, for the dif-
ferent matrix sizes. As we can see, there is a consider-
able reduction in the number of cycles when using the
SIMD module, up to 5×. Interestingly, performing the
same operations on LEON3 using 8-bit arithmetic does
not present a meaningful improvement over the 32-bit
version. This shows that LEON3 cannot benefit simply
by reducing the size of neural network operations which
is a common approach in tinyML systems, but it needs
the assistance of a SIMD unit or accelerator to provide
high AI performance.

Given that our modifications reduce the CPU frequency,
we provide the actual speed-up in Table 3 for better inter-
pretation of the results. We notice that even in this case,
we have reached up to 3.81× speed-up in the 8x8 matri-
ces. In the other scenarios the speed-up is also consid-
erable proving the utility of the designed SIMD module
in machine learning applications. Moreover, the results
show that the overall performance benefit is larger than
the hardware and frequency overhead.

In addition to this simple evaluation, in order to have
a more space relevant evaluation of our design, we
ported the CIFAR-10 complex inference application
from the GPU4S Bench open source benchmarking
suite [20][21][22]. For inference over 32×32 image
sizes, the speedup we get over the integer implementation
is 4.13×. The application consists of multiple neural net-
work layers such as fully connected, convolutional, max
pooling etc. We notice that the overall benefit we can get
by processing a series of neural network layers is larger
than the improvements we noticed for a single fully con-
nected layer, since some of the networks can benefit much
more from our SIMD additions.

As a rough indication of the speedup offered by our
SIMD implementation to the baseline LEON3, we can
consider that on this benchmark, the use of GPU in an
NVIDIA Xavier platform offers 3.61× speedup over a
parallel 4-core version of the application running on its
high-end ARMv8 compliant Denver CPU [23].

4.2. BNN Accelerator

We have implemented our accelerator using the latest ver-
sion of the TASTE framework and Xilinx’s latest ISE ver-
sion (14.7), which is the only FPGA flow from Xilinx
which is currently integrated with it.

Table 2. Matrix multiplication cycle comparison.

Matrix Size 4x4 8x8 16x16 32x32
LEON3 int 2160 12246 86580 657071
LEON3 char 1968 11526 83179 641903
SIMD module 638 2329 20342 140619

Table 3. SIMD module Speed-up computed based on the
physical execution time of each configuration.

Matrix Size 4x4 8x8 16x16 32x32
Speedup over LEON3 int 2.45 3.81 3.08 3.39
Speedup over LEON3 char 2.24 3.59 2.96 3.31

We have trained the BNNs for our test cases in Python us-
ing TensorFlow and Keras in order to obtain the trained
binary weights which we use in our accelerator. Cur-
rently we have not performed the integration of all the
system on chip in the FPGA (i.e. including the LEON
3 CPU). Instead, we have validated our design in simula-
tion with ISE, using a testbench for testing the accelerator
from end-to-end inference: transfer data to the accelera-
tor, inference and transfer data back from the accelerator.
We validate that the inference results using our accelera-
tor match exactly the CPU implementation.

For the functional validation of the accelerator, we have
used two test cases: one for the classification of the Iris
data set [24] obtained from [25], which consists of 150 4-
dimensional feature vectors who group into three classes,
and one for the MNIST dataset [26]. The Irist dataset
has good characteristics for testing neural network per-
formance with respect to prediction. In terms of compu-
tational cost, a 4D feature vector does not require very
expensive calculations, but it is a good way to verify our
implementation. Similarly, the MNIST dataset is small
enough to allow validation by simulation.

For the performance evaluation, we perform synthesis for
the Xilinx Spartan3 FPGA and according to ISE’s tim-
ing estimation, without place and route our accelerator
can achieve a maximum frequency of 114.943MHz. We
compare our performance against a simulated version of
the LEON 3 using Cobham Gaisler’s TSIM version 3.0.2,
which models a LEON 3 configuration clocked at 50MHz
and equipped with a 4 KiB cache, with 16 bytes per cache
line.

Due to the memory size and simulated instruction lim-
itations of the evaluation version of TSIM, we cannot
use our validation case studies, which despite their small
size exceed these limits. For this reason, we model only
a 512×512 fully connected layer, which fits in the pro-
cessor cache, therefore the achieved performance is only
limited by the computational capabilities of the CPU.
When compiling with -O2, the LEON 3 can perform the
inference task in 4.8 Million cycles, while our accelera-
tor needs 65 thousands cycles for the same computation.

Given the fact that our accelerator operates with double
frequency compared to the CPU, this results in an impres-
sive speedup of 147×.

If we consider the data transfer of these values to the ac-
celerator, the performance benefit is going to be smaller.
For example, in the extreme case of such a small network
that we are considering which doesn’t make much com-
putational demands and in the case that the input data fit
in the processor cache, the benefit is about 32×. In case
of larger BNNs, which consist of multiple connected lay-
ers and therefore they will require a higher ratio of com-
putations compared to the transferred input data, the ben-
efit is expected to be higher.

However, he have to highlight that both these results are
obtained with simulation so they have to be taken with
a grain of salt. Once we will perform the integration of
the LEON 3 and our accelerator in an FPGA, we will
be able to obtain performance results with higher confi-
dence. Moreover, we will be able to compare their area
and frequency trade-offs in a realistic way, using synthe-
sis results after placement and routing. Last but not least,
we will use a relevant case study from a safety-critical
domain similar to [20] or [22].

5. CONCLUSION AND FUTURE WORK

In this paper we introduced two different work-in
progress approaches aiming to the improvement of arti-
ficial intelligence computation in space computing. The
SIMD module presents a portable design that with mini-
mal hardware cost can speed-up the AI processing capa-
bilities of existing space processors such as the LEON3
or the NOEL-V up 4×. All of this while maintaining the
baseline architecture providing backwards compatibility
and allowing the re-utilization of the existing software.

The BNN FPGA accelerator design confirmed once again
the benefits of the TASTE framework, which allows de-
velopers to concentrate on the design of their hardware
without being concerned about the software stack for
communication with the accelerator. This accelerator has
demonstrated incredible results with simulation, showing
the advantages of BNNs. Although we take them with
care, we are optimistic about the actual performance ben-
efit that our accelerator can have on a real FPGA.

Both our designs are interesting approaches for space AI
acceleration and they are complementary to each other, so
they can also work well together. We leave the evaluation
of a system using both designs simultaneously as future
work .

For the SIMD module, in addition to the optimization of
the multiplication operation to further reduce our hard-
ware and timing cost, our next steps include compiler
support for our new instructions, to simplify the code
generation and maximize the optimization in the code.
With these modifications the performance of the SIMD

instructions may increase further. Moreover, this will al-
low us to perform a more extensive evaluation, with stan-
dard machine learning workloads targeting the space do-
main [22]. Finally the integration of our module in the
NOEL-V processor will also be a goal to reach in the
short-term. This would bring even more opportunities for
improvement in the AI computation in space processors.

On the other hand, regarding the BNN accelerator, we are
planning to create a VHDL code generator for the imple-
mentation of the AI accelerator directly from Python to
the TASTE framework. In addition, we will integrate our
solution with a deep learning library such as PyTorch or
TensorFlow, in order to allow interoperability with exist-
ing widely used machine learning frameworks.

ACKNOWLEDGMENTS

This work is partially supported by ESA under
the GPU4S (GPU for Space) project (ITT AO/1-
9010/17/NL/AF), by the Spanish Ministry of Economy
and Competitiveness (MINECO) under grants PID2019-
107255GB and FJCI-2017-34095. It received also sup-
port by the European Commission’s Horizon 2020 pro-
gramme under the UP2DATE project (grant agreement
871465), the HiPEAC Network of Excellence, the Xilinx
University Program (XUP) and XUP Board Partner Red
Pitaya.

REFERENCES

[1] Jan-Gerd Meß, Frank Dannemann, and Fabian
Greif. Techniques of Artificial Intelligence for
Space Applications - A Survey. In European Work-
shop on On-Board Data Processing (OBDP), 2019.

[2] Marc Solé Bonet. GRLIB AI extension.
https://gitlab.bsc.es/msolebon/
grlib-ai-extension, 2021.

[3] Jannis Wolf. FPGA BNN Accelerator.
http://www.github.com/JannisWolf/
fpga_bnn_accelerator, 2021.

[4] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou,
Shengyuan Zhou, Olivier Teman, Xiaobing Feng,
Xuehai Zhou, and Yunji Chen. PuDianNao: A Poly-
valent Machine Learning Accelerator. In ASPLOS,
2015.

[5] Cobham Gaisler. LEON3 Processor.
https://www.gaisler.com/index.php/products/processors/leon3.
(Accessed June 07, 2021).

[6] Cobham Gaisler. NOEL-V Processor.
https://www.gaisler.com/index.php/products/processors/noel-
v. (Accessed June 07, 2021).

[7] N. P. Jouppi et al. In-Datacenter Performance Anal-
ysis of a Tensor Processing Unit. In ISCA, 2017.

[8] Randall James Fisher. General-purpose SIMD
Within a Register: Parallel Processing on Con-
sumer Microprocessors. PhD thesis, Purdue Uni-
versity, 2003.

[9] Martin Danĕk. ESA IP Core Extensions for
LEON2: daiFPU and SWAR. In ESA TEC-ED &
TEC-SW Final Presentation Days, May 2020.

[10] Matina Maria Trompouki and Leonidas Kosmidis.
Towards general purpose computations on low-end
mobile gpus. In DATE, 2016.

[11] Cobham Gaisler. LEON Bare-C
Cross Compilation System (BCC).
https://www.gaisler.com/index.php/products/operating-
systems/bcc. (Accessed June 07, 2021).

[12] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and
N. Sebe. Binary Neural Networks: A Survey. Pat-
tern Recognition, Special Issue: Explainable Deep
Learning for Efficient and Robust Pattern Recogni-
tion, 105, 2020.

[13] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gam-
bardella, Michaela Blott, Philip Leong, Magnus
Jahre, and Kees Vissers. Finn: A framework for
fast, scalable binarized neural network inference. In
Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays,
FPGA ’17, page 65–74, New York, NY, USA, 2017.
Association for Computing Machinery.

[14] Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar,
and Trevor Bauer. Xilinx adaptive compute acceler-
ation platform: Versaltm architecture. In Proceed-
ings of the 2019 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, FPGA
’19, page 84–93, New York, NY, USA, 2019. Asso-
ciation for Computing Machinery.

[15] Joseph James Edwards. Real-time Computer Vision
in Software using Custom Vector Overlays. PhD
thesis, University of British Columbia, 2018.

[16] European Space Agency (ESA). TASTE.
https://essr.esa.int/project/taste, 2021.

[17] Maxime Perrotin, Eric Conquet, Julien Delange,
André Schiele, and Thanassis Tsiodras. TASTE:
A Real-Time Software Engineering Tool-Chain
Overview, Status, and Future. In SDL 2011: Inte-
grating System and Software Modeling, LNCS, Vol.
7083, pages 26–37, 01 2011.

[18] International Standards Organization (ISO). Infor-
mation technology - abstract syntax notation one
(asn.1): Specification of basic notation. (ISO/IEC
8824-1:2015), 2015.

[19] M. Johns and T. J. Kazmierski. A Minimal RISC-
V Vector Processor for Embedded Systems. In
2020 Forum for Specification and Design Lan-
guages (FDL), 2020.

[20] I. Rodriguez et al. GPU4S Bench: Design and
Implementation of an Open GPU Benchmarking
Suite for Space On-board Processing. Technical
Report UPC-DAC-RR-CAP-2019-1, Universitat
Politecnica de Catalunya. https://www.

ac.upc.edu/app/research-reports/
public/html/research_center_
index-CAP-2019,en.html.

[21] Leonidas Kosmidis, Iván Rodriguez, Alvaro Jover-
Alvarez, Sergi Alcaide, Jérôme Lachaize, Olivier
Notebaert, Antoine Certain, and David Steenari.
GPU4S (GPUs for Space): Are we there yet? In
European Workshop on On-Board Data Processing
(OBDP), 2021.

[22] David Steenari, Leonidas Kosmidis, Ivan Ro-
driquez, Alvaro Jover, and Kyra Förster. OBPMark
(On-Board Processing Benchmarks) - Open Source
Computational Performance Benchmarks for Space
Applications. In European Workshop on On-Board
Data Processing (OBDP), 2021.

[23] Alvaro Jover-Alvarez, Alejandro J. Calderón, Iván
Rodriguez, Leonidas Kosmidis, Kazi Asifuzzaman,
Patrick Uven, Kim Grüttner, Tomaso Poggi, and
Irune Agirre. The UP2DATE Baseline Research
Platforms. In Proceedings of the 2021 Design, Au-
tomation and Test in Europe Conference and Exhi-
bition, DATE 2021, 2021.

[24] R. A. Fisher. The use of multiple measure-
ments in taxonomic problems. Annals of Eugenics,
7(2):179–188, 1936.

[25] Dheeru Dua and Casey Graff. UCI machine learn-
ing repository, 2017.

[26] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11), 1998.

