README.md 21.4 KB
Newer Older
Francesco Gatti's avatar
README  
Francesco Gatti committed
1
# tkDNN
2
tkDNN is a Deep Neural Network library built with cuDNN and tensorRT primitives, specifically thought to work on NVIDIA Jetson Boards. It has been tested on TK1(branch cudnn2), TX1, TX2, AGX Xavier and several discrete GPU.
Micaela Verucchi's avatar
Micaela Verucchi committed
3
The main goal of this project is to exploit NVIDIA boards as much as possible to obtain the best inference performance. It does not allow training. 
Francesco Gatti's avatar
README  
Francesco Gatti committed
4

Micaela Verucchi's avatar
Micaela Verucchi committed
5
6
7
8

If you use tkDNN in your research, please cite one of the following papers. For use in commercial solutions, write at gattifrancesco@hotmail.it or refer to https://hipert.unimore.it/ .

```
Micaela Verucchi's avatar
Micaela Verucchi committed
9
Accepted paper @ IRC 2020, will soon be published.
Micaela Verucchi's avatar
Micaela Verucchi committed
10
11
M. Verucchi, L. Bartoli, F. Bagni, F. Gatti, P. Burgio and M. Bertogna, "Real-Time clustering and LiDAR-camera fusion on embedded platforms for self-driving cars",  in proceedings in IEEE Robotic Computing (2020)

Micaela Verucchi's avatar
Micaela Verucchi committed
12
Accepted paper @ ETFA 2020, will soon be published.
Micaela Verucchi's avatar
Micaela Verucchi committed
13
14
15
16
M. Verucchi, G. Brilli, D. Sapienza, M. Verasani, M. Arena, F. Gatti, A. Capotondi, R. Cavicchioli, M. Bertogna, M. Solieri
"A Systematic Assessment of Embedded Neural Networks for Object Detection", in IEEE International Conference on Emerging Technologies and Factory Automation (2020)
```

Micaela Verucchi's avatar
Micaela Verucchi committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
## Results
Inference FPS of yolov4 with tkDNN, average of 1200 images with the same dimesion as the input size, on 
  * RTX 2080Ti (CUDA 10.2, TensorRT 7.0.0, Cudnn 7.6.5);
  * Xavier AGX, Jetpack 4.3 (CUDA 10.0, CUDNN 7.6.3, tensorrt 6.0.1 );
  * Tx2, Jetpack 4.2 (CUDA 10.0, CUDNN 7.3.1, tensorrt 5.0.6 );
  * Jetson Nano, Jetpack 4.4  (CUDA 10.2, CUDNN 8.0.0, tensorrt 7.1.0 ). 

| Platform   | Network    | FP32, B=1 | FP32, B=4	| FP16, B=1 |	FP16, B=4 |	INT8, B=1 |	INT8, B=4 | 
| :------:   | :-----:    | :-----:   | :-----:   | :-----:   |	:-----:   |	:-----:   |	:-----:   | 
| RTX 2080Ti | yolo4  320 | 118,59	  |237,31	    | 207,81	  | 443,32	  | 262,37	  | 530,93    | 
| RTX 2080Ti | yolo4  416 | 104,81	  |162,86	    | 169,06	  | 293,78	  | 206,93	  | 353,26    | 
| RTX 2080Ti | yolo4  512 | 92,98	    |132,43	    | 140,36	  | 215,17	  | 165,35	  | 254,96    | 
| RTX 2080Ti | yolo4  608 | 63,77	    |81,53	    | 111,39	  | 152,89	  | 127,79	  | 184,72    | 
| AGX Xavier | yolo4 320  |	26,78	    |32,05	    | 57,14	    | 79,05	    | 73,15	    | 97,56     |
| AGX Xavier | yolo4 416  |	19,96	    |21,52	    | 41,01	    | 49,00	    | 50,81	    | 60,61     |
| AGX Xavier | yolo4 512  |	16,58	    |16,98	    | 31,12	    | 33,84	    | 37,82	    | 41,28     |
| AGX Xavier | yolo4 608  |	9,45 	    |10,13	    | 21,92	    | 23,36	    | 27,05	    | 28,93     |
| Tx2        | yolo4 320	| 11,18	    | 12,07	    | 15,32	    | 16,31     | -         | -         |
| Tx2        | yolo4 416	| 7,30	    | 7,58	    | 9,45	    | 9,90      | -         | -         |
| Tx2        | yolo4 512	| 5,96	    | 5,95	    | 7,22	    | 7,23      | -         | -         |
| Tx2        | yolo4 608	| 3,63	    | 3,65	    | 4,67	    | 4,70      | -         | -         |
| Nano       | yolo4 320	| 4,23	    | 4,55	    | 6,14	    | 6,53      | -         | -         |
| Nano       | yolo4 416	| 2,88	    | 3,00	    | 3,90	    | 4,04      | -         | -         |
| Nano       | yolo4 512	| 2,32	    | 2,34	    | 3,02	    | 3,04      | -         | -         |
| Nano       | yolo4 608	| 1,40	    | 1,41	    | 1,92	    | 1,93      | -         | -         |

Micaela Verucchi's avatar
Micaela Verucchi committed
43
## Index
Francesco Gatti's avatar
Francesco Gatti committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
- [tkDNN](#tkdnn)
  - [Index](#index)
  - [Dependencies](#dependencies)
  - [About OpenCV](#about-opencv)
  - [How to compile this repo](#how-to-compile-this-repo)
  - [Workflow](#workflow)
  - [How to export weights](#how-to-export-weights)
    - [1)Export weights from darknet](#1export-weights-from-darknet)
    - [2)Export weights for DLA34 and ResNet101](#2export-weights-for-dla34-and-resnet101)
    - [3)Export weights for CenterNet](#3export-weights-for-centernet)
    - [4)Export weights for MobileNetSSD](#4export-weights-for-mobilenetssd)
  - [Run the demo](#run-the-demo)
    - [FP16 inference](#fp16-inference)
    - [INT8 inference](#int8-inference)
  - [mAP demo](#map-demo)
  - [Existing tests and supported networks](#existing-tests-and-supported-networks)
  - [References](#references)
Micaela Verucchi's avatar
Micaela Verucchi committed
61
62
63
64
65
66




## Dependencies
This branch works on every NVIDIA GPU that supports the dependencies:
67
68
69
* CUDA 10.0
* CUDNN 7.603
* TENSORRT 6.01
70
* OPENCV 3.4
71
* yaml-cpp 0.5.2 (sudo apt install libyaml-cpp-dev)
Francesco Gatti's avatar
README  
Francesco Gatti committed
72

73
74
75
## About OpenCV
To compile and install OpenCV4 with contrib us the script ```install_OpenCV4.sh```. It will download and compile OpenCV in Download folder.
```
Micaela Verucchi's avatar
Micaela Verucchi committed
76
bash scripts/install_OpenCV4.sh
77
78
79
```
When using openCV not compiled with contrib, comment the definition of OPENCV_CUDACONTRIBCONTRIB in include/tkDNN/DetectionNN.h. When commented, the preprocessing of the networks is computed on the CPU, otherwise on the GPU. In the latter case some milliseconds are saved in the end-to-end latency. 

Micaela Verucchi's avatar
Micaela Verucchi committed
80
## How to compile this repo
Francesco Gatti's avatar
Francesco Gatti committed
81
Build with cmake. If using Ubuntu 18.04 a new version of cmake is needed (3.15 or above). 
Francesco Gatti's avatar
README  
Francesco Gatti committed
82
```
Micaela Verucchi's avatar
Micaela Verucchi committed
83
git clone https://github.com/ceccocats/tkDNN
84
cd tkDNN
Francesco Gatti's avatar
README  
Francesco Gatti committed
85
86
mkdir build
cd build
Francesco Gatti's avatar
Francesco Gatti committed
87
cmake .. 
Francesco Gatti's avatar
README  
Francesco Gatti committed
88
89
90
make
```

Micaela Verucchi's avatar
Micaela Verucchi committed
91
92
## Workflow
Steps needed to do inference on tkDNN with a custom neural network. 
Micaela Verucchi's avatar
Micaela Verucchi committed
93
* Build and train a NN model with your favorite framework.
Micaela Verucchi's avatar
Micaela Verucchi committed
94
95
96
97
* Export weights and bias for each layer and save them in a binary file (one for layer).
* Export outputs for each layer and save them in a binary file (one for layer).
* Create a new test and define the network, layer by layer using the weights extracted and the output to check the results. 
* Do inference.
Davide Sapienza's avatar
Davide Sapienza committed
98

Micaela Verucchi's avatar
Micaela Verucchi committed
99
100
## How to export weights

101
Weights are essential for any network to run inference. For each test a folder organized as follow is needed (in the build folder):
Davide Sapienza's avatar
Davide Sapienza committed
102
```
Micaela Verucchi's avatar
Micaela Verucchi committed
103
104
105
    test_nn
        |---- layers/ (folder containing a binary file for each layer with the corresponding wieghts and bias)
        |---- debug/  (folder containing a binary file for each layer with the corresponding outputs)
Davide Sapienza's avatar
Davide Sapienza committed
106
```
Micaela Verucchi's avatar
Micaela Verucchi committed
107
Therefore, once the weights have been exported, the folders layers and debug should be placed in the corresponding test.
Davide Sapienza's avatar
Davide Sapienza committed
108

Micaela Verucchi's avatar
Micaela Verucchi committed
109
### 1)Export weights from darknet
Francesco Gatti's avatar
Francesco Gatti committed
110
To export weights for NNs that are defined in darknet framework, use [this](https://git.hipert.unimore.it/fgatti/darknet.git) fork of darknet and follow these steps to obtain a correct debug and layers folder, ready for tkDNN.
Davide Sapienza's avatar
Davide Sapienza committed
111
112

```
Francesco Gatti's avatar
Francesco Gatti committed
113
git clone https://git.hipert.unimore.it/fgatti/darknet.git
114
cd darknet
Micaela Verucchi's avatar
Micaela Verucchi committed
115
116
117
make
mkdir layers debug
./darknet export <path-to-cfg-file> <path-to-weights> layers
Davide Sapienza's avatar
Davide Sapienza committed
118
```
Micaela Verucchi's avatar
Micaela Verucchi committed
119
N.b. Use compilation with CPU (leave GPU=0 in Makefile) if you also want debug. 
Davide Sapienza's avatar
Davide Sapienza committed
120

Micaela Verucchi's avatar
Micaela Verucchi committed
121
122
### 2)Export weights for DLA34 and ResNet101 
To get weights and outputs needed to run the tests dla34 and resnet101 use the Python script and the Anaconda environment included in the repository.   
Davide Sapienza's avatar
Davide Sapienza committed
123

Micaela Verucchi's avatar
Micaela Verucchi committed
124
Create Anaconda environment and activate it:
Francesco Gatti's avatar
Francesco Gatti committed
125
```
Micaela Verucchi's avatar
Micaela Verucchi committed
126
127
128
conda env create -f file_name.yml
source activate env_name
python <script name>
Francesco Gatti's avatar
Francesco Gatti committed
129
```
Micaela Verucchi's avatar
Micaela Verucchi committed
130
131
### 3)Export weights for CenterNet
To get the weights needed to run Centernet tests use [this](https://github.com/sapienzadavide/CenterNet.git) fork of the original Centernet. 
Francesco Gatti's avatar
Francesco Gatti committed
132
```
Micaela Verucchi's avatar
Micaela Verucchi committed
133
git clone https://github.com/sapienzadavide/CenterNet.git
Francesco Gatti's avatar
Francesco Gatti committed
134
```
Micaela Verucchi's avatar
Micaela Verucchi committed
135
* follow the instruction in the README.md and INSTALL.md
Davide Sapienza's avatar
Davide Sapienza committed
136
137

```
Micaela Verucchi's avatar
Micaela Verucchi committed
138
139
python demo.py --input_res 512 --arch resdcn_101 ctdet --demo /path/to/image/or/folder/or/video/or/webcam --load_model ../models/ctdet_coco_resdcn101.pth --exp_wo --exp_wo_dim 512
python demo.py --input_res 512 --arch dla_34 ctdet --demo /path/to/image/or/folder/or/video/or/webcam --load_model ../models/ctdet_coco_dla_2x.pth --exp_wo --exp_wo_dim 512
Davide Sapienza's avatar
Davide Sapienza committed
140
```
Micaela Verucchi's avatar
Micaela Verucchi committed
141
### 4)Export weights for MobileNetSSD
Micaela Verucchi's avatar
Micaela Verucchi committed
142
To get the weights needed to run Mobilenet tests use [this](https://github.com/mive93/pytorch-ssd) fork of a Pytorch implementation of SSD network. 
Davide Sapienza's avatar
Davide Sapienza committed
143
144

```
Micaela Verucchi's avatar
Micaela Verucchi committed
145
146
147
148
git clone https://github.com/mive93/pytorch-ssd
cd pytorch-ssd
conda env create -f env_mobv2ssd.yml
python run_ssd_live_demo.py mb2-ssd-lite <pth-model-fil> <labels-file>
Davide Sapienza's avatar
Davide Sapienza committed
149
```
Francesco Gatti's avatar
Francesco Gatti committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

## Darknet Parser
tkDNN implement and easy parser for darknet cfg files, a network can be converted with *tk::dnn::darknetParser*:
```
// example of parsing yolo4
tk::dnn::Network *net = tk::dnn::darknetParser("yolov4.cfg", "yolov4/layers", "coco.names");
net->print();
```
All models from darknet are now parsed directly from cfg, you still need to export the weights with the descripted tools in the previus section.
<details>
  <summary>Supported layers</summary>
  convolutional
  maxpool
  avgpool
  shortcut
  upsample
  route
  reorg
  region
  yolo
</details>
<details>
  <summary>Supported activations</summary>
  relu
  leaky
  mish
</details>

Micaela Verucchi's avatar
Micaela Verucchi committed
178
## Run the demo
Davide Sapienza's avatar
Davide Sapienza committed
179

Micaela Verucchi's avatar
Micaela Verucchi committed
180
To run the an object detection demo follow these steps (example with yolov3):
Davide Sapienza's avatar
Davide Sapienza committed
181
```
Francesco Gatti's avatar
Francesco Gatti committed
182
rm yolo3_fp32.rt        # be sure to delete(or move) old tensorRT files
Micaela Verucchi's avatar
Micaela Verucchi committed
183
./test_yolo3            # run the yolo test (is slow)
Francesco Gatti's avatar
Francesco Gatti committed
184
./demo yolo3_fp32.rt ../demo/yolo_test.mp4 y
Davide Sapienza's avatar
Davide Sapienza committed
185
```
186
In general the demo program takes 4 parameters:
Davide Sapienza's avatar
Davide Sapienza committed
187
```
188
./demo <network-rt-file> <path-to-video> <kind-of-network> <number-of-classes> <n-batches> <show-flag>
189
```
Micaela Verucchi's avatar
Micaela Verucchi committed
190
191
192
193
where
*  ```<network-rt-file>``` is the rt file generated by a test
*  ```<<path-to-video>``` is the path to a video file or a camera input  
*  ```<kind-of-network>``` is the type of network. Thee types are currently supported: ```y``` (YOLO family), ```c``` (CenterNet family) and ```m``` (MobileNet-SSD family)
194
*  ```<number-of-classes>```is the number of classes the network is trained on
195
196
197
*  ```<n-batches>``` number of batches to use in inference (N.B. you should first export TKDNN_BATCHSIZE to the required n_batches and create again the rt file for the network).
*  ```<show-flag>``` if set to 0 the demo will not show the visualization but save the video into result.mp4 (if n-batches ==1)

Davide Sapienza's avatar
Davide Sapienza committed
198
N.b. By default it is used FP32 inference
Micaela Verucchi's avatar
Micaela Verucchi committed
199
200

![demo](https://user-images.githubusercontent.com/11562617/72547657-540e7800-388d-11ea-83c6-49dfea2a0607.gif)
201

Davide Sapienza's avatar
Davide Sapienza committed
202
203
204
205
206
### FP16 inference

To run the an object detection demo with FP16 inference follow these steps (example with yolov3):
```
export TKDNN_MODE=FP16  # set the half floating point optimization
Francesco Gatti's avatar
Francesco Gatti committed
207
rm yolo3_fp16.rt        # be sure to delete(or move) old tensorRT files
Davide Sapienza's avatar
Davide Sapienza committed
208
./test_yolo3            # run the yolo test (is slow)
Francesco Gatti's avatar
Francesco Gatti committed
209
./demo yolo3_fp16.rt ../demo/yolo_test.mp4 y
Davide Sapienza's avatar
Davide Sapienza committed
210
211
212
213
214
```
N.b. Using FP16 inference will lead to some errors in the results (first or second decimal). 

### INT8 inference

Micaela Verucchi's avatar
Micaela Verucchi committed
215
216
217
218
219
220
To run the an object detection demo with INT8 inference three environment variables need to be set:
  * ```export TKDNN_MODE=INT8```: set the 8-bit integer optimization
  * ```export TKDNN_CALIB_IMG_PATH=/path/to/calibration/image_list.txt``` : image_list.txt has in each line the absolute path to a calibration image
  * ```export TKDNN_CALIB_LABEL_PATH=/path/to/calibration/label_list.txt```: label_list.txt has in each line the absolute path to a calibration label
  
You should provide image_list.txt and label_list.txt, using training images. However, if you want to quickly test the INT8 inference you can run (from this repo root folder)
Davide Sapienza's avatar
Davide Sapienza committed
221
```
Micaela Verucchi's avatar
Micaela Verucchi committed
222
223
224
bash scripts/download_validation.sh COCO
```
to automatically download COCO2017 validation (inside demo folder) and create those needed file. Use BDD insted of COCO to download BDD validation. 
Davide Sapienza's avatar
Davide Sapienza committed
225

Micaela Verucchi's avatar
Micaela Verucchi committed
226
227
228
229
230
Then a complete example using yolo3 and COCO dataset would be:
```
export TKDNN_MODE=INT8
export TKDNN_CALIB_LABEL_PATH=../demo/COCO_val2017/all_labels.txt
export TKDNN_CALIB_IMG_PATH=../demo/COCO_val2017/all_images.txt
Francesco Gatti's avatar
Francesco Gatti committed
231
rm yolo3_int8.rt        # be sure to delete(or move) old tensorRT files
Davide Sapienza's avatar
Davide Sapienza committed
232
./test_yolo3            # run the yolo test (is slow)
Francesco Gatti's avatar
Francesco Gatti committed
233
./demo yolo3_int8.rt ../demo/yolo_test.mp4 y
Davide Sapienza's avatar
Davide Sapienza committed
234
```
Micaela Verucchi's avatar
Micaela Verucchi committed
235
236
237
238
239
N.B. 
 * Using INT8 inference will lead to some errors in the results. 
 * The test will be slower: this is due to the INT8 calibration, which may take some time to complete. 
 * INT8 calibration requires TensorRT version greater than or equal to 6.0
 * Only 100 images are used to create the calibration table by default (set in the code).
Davide Sapienza's avatar
Davide Sapienza committed
240

241
242
243
### BatchSize bigger than 1
```
export TKDNN_BATCHSIZE=2
Francesco Gatti's avatar
Francesco Gatti committed
244
245
246
247
248
249
# build tensorRT files
```
This will create a TensorRT file with the desidered **max** batch size.
The test will still run with a batch of 1, but the created tensorRT can manage the desidered batch size.

### Test batch Inference
Francesco Gatti's avatar
Francesco Gatti committed
250
This will test the network with random input and check if the output of each batch is the same.
Francesco Gatti's avatar
Francesco Gatti committed
251
252
253
254
255
256
257
258
259
```
./test_rtinference <network-rt-file> <number-of-batches>
# <number-of-batches> should be less or equal to the max batch size of the <network-rt-file>

# example
export TKDNN_BATCHSIZE=4           # set max batch size
rm yolo3_fp32.rt                   # be sure to delete(or move) old tensorRT files
./test_yolo3                       # build RT file
./test_rtinference yolo3_fp32.rt 4 # test with a batch size of 4
260
261
```

262
## mAP demo
Davide Sapienza's avatar
Davide Sapienza committed
263

264
265
To compute mAP, precision, recall and f1score, run the map_demo.

266
267
A validation set is needed. 
To download COCO_val2017 (80 classes) run (form the root folder): 
xavier's avatar
xavier committed
268
```
269
bash scripts/download_validation.sh COCO
xavier's avatar
xavier committed
270
```
271
272
273
274
275
To download Berkeley_val (10 classes) run (form the root folder): 
```
bash scripts/download_validation.sh BDD
```

xavier's avatar
xavier committed
276
To compute the map, the following parameters are needed:
277
```
Micaela Verucchi's avatar
Micaela Verucchi committed
278
./map_demo <network rt> <network type [y|c|m]> <labels file path> <config file path>
279
280
```
where 
Micaela Verucchi's avatar
Micaela Verucchi committed
281
* ```<network rt>```: rt file of a chosen network on which compute the mAP.
Micaela Verucchi's avatar
Micaela Verucchi committed
282
* ```<network type [y|c|m]>```: type of network. Right now only y(yolo), c(centernet) and m(mobilenet) are allowed
Micaela Verucchi's avatar
Micaela Verucchi committed
283
* ```<labels file path>```: path to a text file containing all the paths of the ground-truth labels. It is important that all the labels of the ground-truth are in a folder called 'labels'. In the folder containing the folder 'labels' there should be also a folder 'images', containing all the ground-truth images having the same same as the labels. To better understand, if there is a label path/to/labels/000001.txt there should be a corresponding image path/to/images/000001.jpg. 
Micaela Verucchi's avatar
Micaela Verucchi committed
284
* ```<config file path>```: path to a yaml file with the parameters needed for the mAP computation, similar to demo/config.yaml
285
286
287
288

Example:

```
xavier's avatar
xavier committed
289
cd build
Davide Sapienza's avatar
Davide Sapienza committed
290
./map_demo dla34_cnet_FP32.rt c ../demo/COCO_val2017/all_labels.txt ../demo/config.yaml
xavier's avatar
xavier committed
291
```
Micaela Verucchi's avatar
Micaela Verucchi committed
292

293
294
This demo also creates a json file named ```net_name_COCO_res.json``` containing all the detections computed. The detections are in COCO format, the correct format to subit the results to [CodaLab COCO detection challenge](https://competitions.codalab.org/competitions/20794#participate).

Micaela Verucchi's avatar
Micaela Verucchi committed
295
## Existing tests and supported networks
Micaela Verucchi's avatar
Micaela Verucchi committed
296
297
298

| Test Name         | Network                                       | Dataset                                                       | N Classes | Input size    | Weights                                                                   |
| :---------------- | :-------------------------------------------- | :-----------------------------------------------------------: | :-------: | :-----------: | :------------------------------------------------------------------------ |
Micaela Verucchi's avatar
Micaela Verucchi committed
299
| yolo              | YOLO v2<sup>1</sup>                           | [COCO 2014](http://cocodataset.org/)                          | 80        | 608x608       | [weights](https://cloud.hipert.unimore.it/s/nf4PJ3k8bxBETwL/download)                                                                   |
Micaela Verucchi's avatar
Micaela Verucchi committed
300
301
302
| yolo_224          | YOLO v2<sup>1</sup>                           | [COCO 2014](http://cocodataset.org/)                          | 80        | 224x224       | weights                                                                   |
| yolo_berkeley     | YOLO v2<sup>1</sup>                           | [BDD100K  ](https://bair.berkeley.edu/blog/2018/05/30/bdd/)   | 10        | 416x736       | weights                                                                   |
| yolo_relu         | YOLO v2 (with ReLU, not Leaky)<sup>1</sup>    | [COCO 2014](http://cocodataset.org/)                          | 80        | 416x416       | weights                                                                   |
Micaela Verucchi's avatar
Micaela Verucchi committed
303
| yolo_tiny         | YOLO v2 tiny<sup>1</sup>                      | [COCO 2014](http://cocodataset.org/)                          | 80        | 416x416       | [weights](https://cloud.hipert.unimore.it/s/m3orfJr8pGrN5mQ/download)                                                                   |
Micaela Verucchi's avatar
Micaela Verucchi committed
304
| yolo_voc          | YOLO v2<sup>1</sup>                           | [VOC      ](http://host.robots.ox.ac.uk/pascal/VOC/)          | 21        | 416x416       | [weights](https://cloud.hipert.unimore.it/s/DJC5Fi2pEjfNDP9/download)                                                                   |
Micaela Verucchi's avatar
Micaela Verucchi committed
305
| yolo3             | YOLO v3<sup>2</sup>                           | [COCO 2014](http://cocodataset.org/)                          | 80        | 416x416       | [weights](https://cloud.hipert.unimore.it/s/jPXmHyptpLoNdNR/download)     |
306
| yolo3_512   | YOLO v3<sup>2</sup>                                 | [COCO 2017](http://cocodataset.org/)                          | 80        | 512x512       | [weights](https://cloud.hipert.unimore.it/s/RGecMeGLD4cXEWL/download)     |
Micaela Verucchi's avatar
Micaela Verucchi committed
307
| yolo3_berkeley    | YOLO v3<sup>2</sup>                           | [BDD100K  ](https://bair.berkeley.edu/blog/2018/05/30/bdd/)   | 10        | 320x544       | [weights](https://cloud.hipert.unimore.it/s/o5cHa4AjTKS64oD/download)                                                                   |
Micaela Verucchi's avatar
Micaela Verucchi committed
308
309
| yolo3_coco4       | YOLO v3<sup>2</sup>                           | [COCO 2014](http://cocodataset.org/)                          | 4         | 416x416       | [weights](https://cloud.hipert.unimore.it/s/o27NDzSAartbyc4/download)                                                                   |
| yolo3_flir        | YOLO v3<sup>2</sup>                           | [FREE FLIR](https://www.flir.com/oem/adas/adas-dataset-form/) | 3         | 320x544       | [weights](https://cloud.hipert.unimore.it/s/62DECncmF6bMMiH/download)                                                                   |
Micaela Verucchi's avatar
Micaela Verucchi committed
310
| yolo3_tiny        | YOLO v3 tiny<sup>2</sup>                      | [COCO 2014](http://cocodataset.org/)                          | 80        | 416x416       | [weights](https://cloud.hipert.unimore.it/s/LMcSHtWaLeps8yN/download)     |
311
| yolo3_tiny512     | YOLO v3 tiny<sup>2</sup>                      | [COCO 2017](http://cocodataset.org/)                          | 80        | 512x512       | [weights](https://cloud.hipert.unimore.it/s/8Zt6bHwHADqP4JC/download)     |
Micaela Verucchi's avatar
Micaela Verucchi committed
312
| dla34             | Deep Leayer Aggreagtion (DLA) 34<sup>3</sup>  | [COCO 2014](http://cocodataset.org/)                          | 80        | 224x224       | weights                                                                   |
Micaela Verucchi's avatar
Micaela Verucchi committed
313
| dla34_cnet        | Centernet (DLA34 backend)<sup>4</sup>         | [COCO 2017](http://cocodataset.org/)                          | 80        | 512x512       | [weights](https://cloud.hipert.unimore.it/s/KRZBbCQsKAtQwpZ/download)     |
Micaela Verucchi's avatar
Micaela Verucchi committed
314
| mobilenetv2ssd    | Mobilnet v2 SSD Lite<sup>5</sup>              | [VOC      ](http://host.robots.ox.ac.uk/pascal/VOC/)          | 21        | 300x300       | [weights](https://cloud.hipert.unimore.it/s/x4ZfxBKN23zAJQp/download)     |
315
| mobilenetv2ssd512 | Mobilnet v2 SSD Lite<sup>5</sup>              | [COCO 2017](http://cocodataset.org/)                          | 81        | 512x512       | [weights](https://cloud.hipert.unimore.it/s/pdCw2dYyHMJrcEM/download)     |
Micaela Verucchi's avatar
Micaela Verucchi committed
316
| resnet101         | Resnet 101<sup>6</sup>                        | [COCO 2014](http://cocodataset.org/)                          | 80        | 224x224       | weights                                                                   |
Micaela Verucchi's avatar
Micaela Verucchi committed
317
| resnet101_cnet    | Centernet (Resnet101 backend)<sup>4</sup>     | [COCO 2017](http://cocodataset.org/)                          | 80        | 512x512       | [weights](https://cloud.hipert.unimore.it/s/5BTjHMWBcJk8g3i/download)     |
Micaela Verucchi's avatar
Micaela Verucchi committed
318
| csresnext50-panet-spp    | Cross Stage Partial Network <sup>7</sup>     | [COCO 2014](http://cocodataset.org/)                          | 80        | 416x416       | [weights](https://cloud.hipert.unimore.it/s/Kcs4xBozwY4wFx8/download)     |
Micaela Verucchi's avatar
Micaela Verucchi committed
319
| yolo4             | Yolov4 <sup>8</sup>                           | [COCO 2017](http://cocodataset.org/)                          | 80        | 416x416       | [weights](https://cloud.hipert.unimore.it/s/d97CFzYqCPCp5Hg/download)     |
Francesco Gatti's avatar
Francesco Gatti committed
320
321
| yolo4_berkeley             | Yolov4 <sup>8</sup>                           | [BDD100K  ](https://bair.berkeley.edu/blog/2018/05/30/bdd/)                          | 10        | 540x320       | [weights](https://cloud.hipert.unimore.it/s/nkWFa5fgb4NTdnB/download)     |
| yolo4tiny             | Yolov4 tiny                           | [COCO 2017](http://cocodataset.org/)                          | 80        | 416x416       | [weights](https://cloud.hipert.unimore.it/s/iRnc4pSqmx78gJs/download)     |
Micaela Verucchi's avatar
Micaela Verucchi committed
322
323
324
325
326
327
328
329
330


## References

1. Redmon, Joseph, and Ali Farhadi. "YOLO9000: better, faster, stronger." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
2. Redmon, Joseph, and Ali Farhadi. "Yolov3: An incremental improvement." arXiv preprint arXiv:1804.02767 (2018).
3. Yu, Fisher, et al. "Deep layer aggregation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
4. Zhou, Xingyi, Dequan Wang, and Philipp Krähenbühl. "Objects as points." arXiv preprint arXiv:1904.07850 (2019).
5. Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
Micaela Verucchi's avatar
Micaela Verucchi committed
331
6. He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
Micaela Verucchi's avatar
Micaela Verucchi committed
332
7. Wang, Chien-Yao, et al. "CSPNet: A New Backbone that can Enhance Learning Capability of CNN." arXiv preprint arXiv:1911.11929 (2019).
Micaela Verucchi's avatar
Micaela Verucchi committed
333
8. Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao. "YOLOv4: Optimal Speed and Accuracy of Object Detection." arXiv preprint arXiv:2004.10934 (2020).